Tuesday, June 10, 2008

Gardner's constant

Gardner's constant is the transcendental number e^{\pi \sqrt{163}}. It is given as the integer 262,537,412,640,768,744 in his April 1975 Scientific American Column. So Lets see what programming langugaes have the accuracy to give this result?

So with these figures what will your programming languages will give Gardner's constant?

e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354021234078498193343210681701210056278802351930332247450158539047304199577770935036604169973297250886876966403555707162268447162560798826517871341951246652010305921236677194325278675398558944896970964097545918569563802363701621120477427228364896134225164450781824423529486363721417402388934412479635743702637552944483379980161254922785092577825620926226483262779333865664816277251640191059004916449982893150566047258027786318641551956532442586982946959308019152987211725563475463964479101459040905862984967912874068705048958586717479854667757573205681288459205413340539220001137863009455606881667400169842055804033637953764520304024322566135278369511778838638744396625322498506549958862342818997077332761717839280349465014345588970719425863987727547109629537415211151368350627526023264847287039207643100595841166120545297030236472549296669381151373227536450988890313602057248176585118063036442812314965507047510254465011727211555194866850800368532281831521960037356252794495158284188294787610852639
pi=3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104752162056966024058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955321165344987202755960236480665499119881834797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548161361157352552133475741849468438523323907394143334547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203496252451749399651431429809190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506016842739452267467678895252138522549954666727823986456596116354886230577456498035593634568174324112515076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549781893129784821682998948722658804857564014270477555132379641451523746234364542858444795265867821051141354735739523113427166102135969536231442952484937187110145765403590279934403742007310578539062198387447808478489683321445713868751943506430218453191048481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907186494231961567945208095146550225231603881930142093762137855956638937787083039069792077346722182562599661501421503068038447734549202605414665925201497442850732518666002132434088190710486331734649651453905796268561005508106658796998163574736384052571459102897064140110971206280439039759515677157700420337869936007230558763176359421873125147120532928191826186125867321579198414848829164470609575270695722091756711672291098169091528017350671274858322287183520935396572512108357915136988209144421006751033467110314126711136990865851639831501970165151168517143765761835155650884909989859982387345528331635507647918535
sqrt163=Math.sqrt(163)
gard=262537412640768744

guess=e**(pi*sqrt163)

puts "Gardiners constant is 262537412640768744 \n guess #{guess}\n"

Ruby does not give this result by a fair margin.

Obviously Haskell, matlab, mathematica and such are the proper languages for these problems. The Haskell compiler for OS X seems to require you to blow Satan to get it to work though*.

Your language may give a give some weird answers but are you going to believ someone called Hermite?

*Don Stewart pointed out you don't have to felate beelzbub to get Haskell. So if you don't want to get his scaley member down your gullet try here

4 comments:

Don Stewart said...

It's a nice joke. For what it's worth, there are

Mac installer bundles
for GHC now. So no need to debauch yourself to Satan.

augustss said...

Computed on a MacBook:

> import Data.Number.CReal
> main = putStrLn $ showCReal 100 $ exp (pi * sqrt 163)

262537412640768743.999999999999
2500725971981856888793538563373
3699086270753741037821064791011
86073129511813461860645042

Jason Scheirer said...

In python:

>>> import decimal
>>> pi = decimal.Decimal("3.14159265358979323846264338327950288419716939937510582097494459230781640628620899")
>>> e = decimal.Decimal("2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571")
>>> sqrt163 = pow(decimal.Decimal(163), decimal.Decimal("0.5"))
>>> e**(pi*sqrt163)
Decimal("262537412640768743.9999999992")

FeepingCreature said...

In D:

gentoo-pc ~ $ cat test45.d && gdc test45.d -o test45 && echo "--------" && ./test45
import std.stdio, std.math;

void main() {
writefln(cast(long) pow(E, PI * sqrt(cast(real) 163)));
}
--------
262537412640768744